
Journal of Statistical Physics, Vol. 66, Nos. 1/2, 1992 

Isotropic Majority-Vote Model on a 
Square Lattice 
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The stationary critical properties of the isotropic majority vote model on a 
square lattice are calculated by Monte Carlo simulations and finite size analysis. 
The critical exponents v, 7, and/3  are found to be the same as those of the Ising 
model and the critical noise parameter is found to be qc = 0.075 _+ 0.001. 

KEY W O R D S :  Majority-vote models; stochastic spin systems; Monte  Carlo 
simulation. 

1. I N T R O D U C T I O N  

It has been argued that nonequilibrium stochastic spin systems with 
up-down symmetry fall in the universality class of the equilibrium Ising 
model. ~ This conjecture has been found to be valid for several models that 
do not obey detailed balanceJ 2 6~ Here we analyze, on a square lattice, a 
relatively simple nonequilibrium model with up-down symmetry, namely 
the isotropic majority vote model. ~7,g) We have found, by Monte Carlo 
simulations and finite-size analysis, that its critical exponents, in the 
stationary state, are the same as those of the Ising model. 

The majority vote model is defined as follows. Consider a regular lat- 
tice where at each site there is a spin variable a i=  +1. At each (discrete) 
time a spin is chosen at random. The chosen spin then adopts the majority 
sign of the spins in its neighborhood with probability p and the minority 
sign with probability q = 1 - p .  In other words, the chosen spin flips with 
probability q if it agrees with the majority sign and flips with probability 
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p if it does not. Many versions of the model can be set up by defining the 
neighborhood of a spin. Here we consider, on a square lattice, an isotropic 
version in which the neighborhood of a spin consists of its four nearest 
neighbors. Since this number is even, there are configurations in which the 
neighborhood may have an equal number of plus and minus signs. In those 
cases the chosen spin flips with probability one-half. At this point, the 
model differes from that defined by Liggett (v) and Gray, (8) who include the 
chosen spin in its neighborhood. 

The spin flip probability w~(o-)= w~({o-i}) is then defined by 

(1) 

where the summation is over the nearest neighbor sites and the function 
S(x) is defined by S(x) = sign(x) if x ~ 0 and S(0) = 0. The noise parameter 
q is restricted to the interval 0 ~< q ~< 1/2, in which case the process is attrac- 
tive. The case 1/2 ~< q ~< 1 can be reduced to the attractive case by reversing 
all spins of one of the sublatices and replacing q by 1 - q. This transforma- 
tion leaves wi(~r) invariant. 

The majority vote model defined by (1) can be regarded as composed 
of a zero-temperature process (noiseless majority voting) and an infinite- 
temperature process (spin randomization). Consider an open Ising system 
with ferromagnetic nearest neighbor interactions connected to two heat 
reservoirs, one being a source and the other a sink of heat. Suppose that 
the heat baths are simulated by Glauber processes, (9) the one associated to 
the source occurring with probability b and the other with probability 
1 -  b. The open Ising system is then governed by a competing stochastic 
dynamics whose spin flip probability w,(e) is given by (1~ 

wi(a)=~[1-(1-b)critanh(pa~ai+a)-baitanh(flB~ai+a)l (2) 

where /~A and /?B are the inverse temperatures of the skin and the source, 
respectively. Now if we let the temperature of the sink be very small and 
that of the source be very high, so that/~A --* 0o and/~8 = 0, we obtain the 
spin flip probability given by (1) with b = 2q. With this interpretation there 
is, in the stationary state, a continuous flux of heat through the system 
when 0 < q < 1/2. 

As a manifestation of its dissipative nature, the model shows no 
microscopic reversibility in the stationary state. For instance, the probabil- 
ity of a closed path is, in general, different from that of the reversed path. 
As an example, consider a local configuration consisting of a nearest 
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neighbor pair of up spins, one of them (spin 1) having no down spins as 
nearest neighbors and the other (spin 2) having one or two. From the spin 
flip probability, we find that the probability of the closed path in which 
these two spins are flipped in the sequence 1212 is greater than the reversed 
path by a factor (1 -q) /q .  

Although there is no rigorous proof of phase transition for the 
isotropic majority vote model, it is possible to argue (8) that on a square 
lattice there must be two phases for sufficiently small q. Suppose that an 
island of up spins is formed on a sea of down spins. According to Gray, (8) 
the size of this island follows a birth-and-death process in which the death 
rate is larger than the birth rate. This would prevent the growth of the 
island, keeping the down spin phase stable. By symmetry there must be 
another phase with spins up. If, however, the up-down symmetry of the 
spin flip probability is broken, we expect no phase transition as in the Ising 
model, but unlike Toom's anisotropic voting model. (2) 

When q = 1/2 the spins flip independently, so that the stationary state 
is unique. Actually, one can prove (7'12) that the model has a unique station- 
ary state on a square lattice when 1/4 < q ~< 1/2. This gives an upper bound 
for the critical noise, qc.< 1/4=0.25, which is large compared to our 
numerical value qc = 0.075 _+ 0.001. If one uses a pair approximation (11) one 
gets a critical noise qc=5/37~0.135,  which presumably represents an 
upper bound on the correct value, as is typical for mean field approxima- 
tions. 

2. F I N I T E - S I Z E  S C A L I N G  

Suppose that, in an infinite system, a certain quantity Q(e) behaves, 
near the critical point, like ]~l-", where e is the deviation of the external 
parameter from its critical value. Then, according to finite-size scaling 
theory, (13) one should have QL(~)= U'/VQ(L1/ve) for a finite system of size 
L, where Q(x) is a scaling function. Q(x) is smooth function and analytical 
at the origin. Moreover, for a fixed boundary condition, it can be made 
universal by choosing appropriate metric factors. Here, we consider 
systems with L • L = N sites and periodic boundary conditions. 

Define the variable m by m = Z 7  ai/N. We are interested in the 
following quantities(14): the "magnetization" 

M L =  ( Iml )  (3) 

the "susceptibility" 

X L = N { ( m  2 } -  (Im] }2} (4) 
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and the reduced fourth-order cumulant 

< m  4 > 

U L = I  3(m2>2 (5) 

The averages are meant to be calculated in the stationary state. 
These quantities are functions of the noise parameter q and obey the 

finite-size scaling relations 

ML(q) = L Is/qiFl(L1/~e) (6) 

XL(q) = L'/V2(L t/Ve) (7) 

Uc(q) = ~J(L1/V~) (8) 

where e = q -  qc. They can be derived by postulating a finite-size scaling 
relation for the stationary probability distribution PL(q, m) of m and using 
definitions (3)-(5). Following Binder, (14) we write 

PL(q, m) = L~/~P(L1/Ve, L~/Vm) (9) 

where P(x, s) is a normalized scaling function. Notice that, in deriving 
relation (7), it follows that 7/v = d - 2 f l / v .  

3. MONTE CARLO S IMULATION AND RESULTS 

We have simulated the isotropic majority vote model on a square 
lattice with periodic boundary conditions. We used only square-shaped 
lattices with L • L = N sites, for several values of L ranging from L = 5 up 

Fig. 1. 
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Magnetization ML(q) as a function of the noise parameter q for several values of the 
system size L. 
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Fig. 2. 
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Magnetization ML(q) as a function of 1/L for several values of q. 

to L = 80. For each simulation we have started with a random configura- 
tion of  spins. Given a certain configuration, the next one was obtained as 
follows. ( a ) C h o o s e  a spin at random, spin i, say. (b) Generate a random 
number r uniformly distributed between zero and unity. (c) If r < wi(~r ), flip 
spin i, otherwise do not. After discarding the first configurations, so that 
the stationary regime was reached, we have calculated the quantities of 
interest. For 0.03 ~< q ~< 0.12, we used 9 x l 0  4 Monte  Carlo steps to estimate 
the averages, for any size of the lattice. One Monte  Carlo step equals L 2 
spin-flip trials. 

The magnetization is shown in Fig. 1 as a function of  the noise 
parameter for several values of L. ML(q) never vanishes as long as L is 

Fig. 3. 
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Fig. 4. Reduced fourth-order cumulant UL(q) as a function of q for several values of L. 
Within the accuracy of the data all curves intersect at qc = 0.075. The value of UL(q) at the 
intersection is U* = 0.61. 

finite. However, if q > qc, the magnetization behaves as 1/L and vanishes in 
the limit L ---, oe. When q < qc, on the other hand, it approaches a nonzero 
value M*(q) in the limit L ~ oe. These two behaviors are shown in Fig. 2, 
where ML(q) is plotted as a function of 1/L for several values of q. 

Figure 3 shows In XL(q) as a function of q for several values of L. For 
each L, the susceptibility has a maximum whose position shifts toward the 
critical value as one increases L. (15) 

Fig. 5. 
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Log-log plot of dUL(q)/dq at q = qc versus L. The solid line is the best fit with slope 
1/v = 1.01. 
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To locate the critical point, we plot the reduced fourth-order cumulant 
as a function of q for several values of L. All curves should intersect at 
q=qc,  since, according to the scaling relation (8), UL(qc)= 0 ( 0 ) =  U*, 
independent of L. From Fig. 4, we get qc = 0.075 _+ 0.001 and U * =  
0.61_+0.01. This value of U* compares well with the value (16'17) U * =  
0.611 _+ 0.001 obtained for the square Ising model with periodic boundary 
condition. 

To obtain an estimate of the critical exponent v, we first obtained 
numerically Ui(q)=dUL(q)/dq at the critical point for each value of L. 
From Eq. (8) we have the following scaling relation: 

U'L(q) = L I/~O'(L ~/% ) (10) 

so that U~(qc)=L1/'~[]'(O). From a log-log plot of U'c(qc) versus L, as 
shown in Fig. 5, we obtain 1/v as the slope of the straight line fitted to the 
data points. We obtain v = 0.99 _ 0.05 and 0 ' (0 )  = 0.35 _ 0.04. 

The ratio 7/v is estimated from a log-log plot of XL(qc) versus L. From 
Eq. (7) we have XL(qc)= L~/vX(0), so that V/v is the slope of the straight 
line fitted to the data points as shown in Fig. 6. The best fit gives ?/v = 
1.73 +0.05 and J?(0)=0.065 +0.007. Another estimate can be obtained 
from the log-log plot of the maximum value of the susceptibility X* versus 
L. If we denote by q* the value of q for which XL(q) is maximum, then 
from the scaling relation it follows that q* = qc + x*/L~/~, where x* is inde- 
pendent of L and is the value of x for which X(x) is maximum. Therefore 
X*=XL(q*)=LT/V2(x*) .  From Fig. 6 the best fit gives 7 /v= 1.70_+0.08 
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Fig. 6. Log-log plot of the susceptibility at (a) its maximum and (b) q=qc, versus L. The 
solid lines are best fits with slopes ,//v = (a) 1.70 and (b) 1.73. 
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Fig. 8. 
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Extrapolation of q~, the value of q when the susceptibility is maximum, versus 1/L. 
The extrapolation gives qc = 0.075. 

and X ( x * ) =  0.112 _+ 0.010. Figure 7 shows q* as a function of 1/L. We can 
verify that indeed qc = 0.075 _+ 0.01 and we obtain x* -- 0.20 _+ 0.02. 

To obtain an estimate of ~/v, we have proceeded in a similar way. 
Since from Eq. (6) we have ML(qc)= L-~/~3qr(0), a log-log plot of the 
magnetization at q = qc versus L gives - fl/v as the slope of the straight line 
fitted to the data points. From Fig. 8 we obtain fl/v=O.125+_O.O05 and 
also M(0)  = 0.94 _+ 0.01. 
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Log-log plot of the magnetization at q = qc versus L. The solid line is the best fit with 
slope - fl/v = -0.125.  
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All the amplitudes estimated above are not universal. However, one 
can make a universal quantity by taking the ratio between the suscep- 
tibility at its maximum and at q=qc .  From the results above we get 
2(x*)/)~(0) = 1.7 _+ 0.2. 

4. CONCLUSION 

We have simulated the isotropic majority vote model on a square 
lattice with periodic boundary conditions. The estimates of the critical 
exponents v =0.99 _+0.05, 7Iv= 1.73 _+0.05, and ~/v =0.125 _+0.005 com- 
pare well with the exact values v = 1, 7 = 7/4, and /~ = 1/8 for the equi- 
librium Ising model. The value for the reduced fourth-order cumulant 
U* =0.61_+0.01 is in accordance with the best value U* =0.611 _+0.001 
obtained for this quantity for the square Ising model with periodic bound- 
ary conditions. These numerical results indicate that the isotropic majority 
vote model has the same universal critical behavior as the equilibrium Ising 
model. 
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